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J .  PHYS. A ( P R O C .  P H Y S .  S O C . ) ,  1968, S E R .  2 ,  V O L .  1 .  P R I N T E D  I N  G R E A T  B R I T A I N  

An improved theory of gravitation: I1 

P. RASTALL 
Department of Physics, University of British Columbia, Vancouver, Canada 
MS. received 11 th March 1968 

Abstract. The theory of gravitation of a previous paper is presented in a deductive 
and more rigorous form. The assumptions made about the space-time metric, the 
scalar gravitational potential and the special (Newtonian) charts are summarized. 
An action principle is stated, and the conservation laws of energy-momentum and 
angular momentum are derived. Lagrangian densities for the gravitational field 
are found by assuming that weak gravitational waves propagate at the speed of light. 
The assumption that gravitational energy is not itself a source of the gravitational 
field leads, as in a previous paper, to a theory that is at present observationally 
indistinguishable from Einstein's ; the opposite assumption leads to a distinguishable 
theory. The interactions of the gravitational field with the electromagnetic field and 
with an ideal fluid are discussed. The simplicity of the theory (space-time formally 
flat and one sca!ar potential to describe the gravitational field) is emphasized. 

1. Introduction 
In  a previous paper (Rasta11 1968, to be referred to as I), we tried to build a theory of 

gravitation on assumptions that differ as little as possible from those of special relativity 
and the Newtonian theory. What we now attempt is a more rigorous deductive account. 
The  approach will be field theoretical, which will avoid the difficulties encountered in I 
in dealing with particles, We begin by summarizing the more important results of I, 
separating the wheat from the goats. 

We assumed in I that space-time is Riemannian with a metric g, and we postulated 
the existence of Newtonian charts, in which the spatial diagonal components of the metric 
are equal, the non-diagonal components are zero, and all components are determined by a 
single real function @, the gravitational potential. It was shown that the Newtonian charts 
almost always determine a time direction at each point: more precisely, if (U, x) and 
(U, X') are Newtonian charts, and if Xo(p)  and XL(p), are the tangent vectors to their 
time-like coordinate curves at the point p E U, then X,(p) = k,X,(p) for some constant 
k,. Assuming that the gravitational potential is arbitrary to the extent of an additive constant 
(i.e. only differences of potential are measurable), we proved that the components of the 
metric are exponential functions of the potential. We proved also that, given any neigh- 
bourhood U of a point p and an orthonormal tetrad w,(p) at p ,  there is almost always at 
most one Newtonian chart (U, x) whose coordinate curves have the w,(p) as tangent vectors 
at p .  (These results are invalid in a few cases where the potential is a very simple function.) 

At any point p in the domain of a chart, the tangent vectors of the coordinate curves 
form a basis of the tangent space at p .  We showed (see I, equation (10)) that special 
Newtonian charts always exist whose tangent vectors are orthonormal with respect to the 
metric g at any point where the potential has the value 0,. Such charts are called 0, 
charts, and from now on our Newtonian charts will always be @, charts (although @, will 
not always be the same). 

It simplifies calculations to introduce a new metric 7, with respect to which the tangent 
vectors of a chart are orthonormal at every point. Introducing 7 is equivalent to making a 
@-dependent change in the units of length and time. The  units corresponding to 7 are 
called Newtonian (or @") units, while those corresponding to g are called natural units. 
A length measured in a,, units is called a (Do length, etc. 

Particle dynamics was discussed in I. The  paths of test particles are assumed to be 
geodesics of the metricg. A @-dependent change in the unit of mass, similar to the previous 
changes in the units of length and time, makes the equation of motion of a particle formally 
identical with the special-relativistic equation. The  new unit of mass is again called a 
Newtonian or unit, and in the obvious way one defines @, units of all quantities whose 
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dimensions involve only mass, length and time. We usually distinguish natural quantities 
by a suffix E: an exception is the gravitational potential @, which is always measured in 
natural units. 

The  components of the metric g in a 0, chart, as given in I, equation (lo), depend on 
two constants. One of these is determined by requiring that a slowly moving test particle 
in a weak gravitational field should behave as in Newtonian theory; the other from the 
assumption that the potential at a distance Y from a fixed body tends asymptotically to 
O1 - l /r  as r -+ CO, where Q1 and 1 are constants, and 1 (the 0, gravitational radius of the 
body) is proportional to the body’s @, energy. 

All the results listed so far seem suitable for incorporation in a more formal theory of 
gravitation. It is when one considers the gravitational effect of a particle on itself that 
troubles arise (by particle we mean of course apointparticle). The potential at the position 
of a particle may well be undefined, just as in Newtonian theory. We therefore assumed in I 
that the potential due to a particle has no direct effect on the particle itself, although it 
does have an indirect effect because it changes the gravitational radii of neighbouring 
particles. It is also possible that the energy of a particle’s gravitational field may itself act 
as a source of potential, and thus influence the particle. The  situation here is obviously 
complex and unclear (see also I, 4 9). The  difficulties seem to be quite fundamental, and 
their resolution would require a precise definition of what one means by a particle. We know 
that this is a delicate matter, even in classical electrodynamics (Rohrlich 1965). It is possible 
that particles are essentially quantal phenomena that have no place in a classical theory 
(Dirac 1951). I n  this paper we shall not talk about particles (other than test particles-and 
in § 6 we shall see how to eliminate even these). Instead we shall develop a pure field theory. 

2. a,, charts 
We assume, as in I, that space-time is a C“, 4-dimensional, pseudo-Riemannian mani- 

fold of signature 2 (Hicks 1965, Helgason 1962). Given any point p ,  of space-time, we 
assume that there exists an open set U, real constants 0, and cE, and a chart (E, x )  that 
belongs to the C“ differentiable structure, such thatp, E U, and such that the components 
of the metric g in (U, x) are given by 

for all p E U, where x = (xo, x l ,  x2, x3) = x ( p )  and @::,(U) --f R1 is smooth (that is Cm). 
The constant cE is the natural speed of light, @ is the gravitational potential and (U, x )  is 
a Q0 chart (on U). We have shown (I, appendix) that in general the O0 chart on U is 
determined up to a shift of origin and an orthogonal transformation of the spatial coordinates. 
That is, if (U, x )  and (U, x’) are (Do charts and x ( p )  = x, ~ ’ ( p )  = x’, then d k  = bkmxm + ak 
for a l lp  E U, where the ak and b,, are constants, and b,,b,, = amn. Thus one has always 
the same freedom in choosing a Q0 chart as in choosing a Galilean chart in classical 
mechanics. Usually one has no more freedom than this: the most important exception 
is when 0 = Q0 (the @, charts become inertial charts and we are free to make Lorentz 
transformations). 

It follows from (2.1) that if a (Do chart on U exists, then a Q0’ chart on U exists, for 
any constant @,6. Since no physically significant statement can depend on an arbitrary 
choice of chart, we must take care that the predictions of the theory do not depend on the 
choice of a particular 0, or, once we have chosen a,, on a particular choice of chart. 

If p is a space-time point, there exists a O0 chart (U, x )  such that p E U. Let X,(p) 
be the tangent vectors of this chart at p .  Then a metric tensor -&I) is defined at p by 
requiring that q(p)(X,(p), Xv(p))  = riUv, where qmn = 6,,, = T~~ = -suo.  I t  is easy 
to see that in general ~ ( p )  is uniquely defined, for fixed Oo, independently of the choice of 
<Do chart. Since the Q0 charts cover space-time, one can define a metric tensor field 7 
globally (i.e. on the whole of space-time). We note that q depends on Oo. 
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The  CDo charts are related to CDo lengths and times in the same way that inertial charts 
are related to natural lengths and times in special relativity. For example, if two points 
have 0, coordinates x and x’, and if xo = do, then the CD, length of the line segment 
joining them is Ix-x’I = { ( ~ ’ ~ - - x ~ ) ( x ’ ~ - x ~ ) } ~ / ~ .  Again, if t = x0/cE is the CDo time 
coordinate, and xk is a Oo coordinate of a particle at t ,  then V k  = dxk/dt is the k component 
of the CD0 velocity of the particle at t .  

Physical quantities measured in natural units are assumed to be independent of the 
choice of CDo chart. Of course, it is often convenient to define such quantities in terms of a 
CDo chart, but we must then make sure that the definition is invariant under change of chart. 
A quantity Q that is measured in 0, units will in general depend on the choice of a,. 
If the dimensions of Q involve only mass, length and time-say [Q] = [L“TPM6], a, p, 8 
real-and if Q’ is the same quantity measured in a,’ units, then 

(K - p - 38)( @o - Qo’) --) . 
c3 

Q’ = Q ~ X P (  

It follows from (2.2) and the dimensional homogeneity of physical equations that any 
physical equation which is valid for CD, quantities remains valid when each CD, quantity 
is replaced by the corresponding CDh quantity. 

The  natural units at the point p where the potential is Q P  are the same as the CD, units 
if CDP = (Do. Thus if Q is a CDo quantity that depends on CD only through the value C D p ,  and 
QE is the corresponding natural quantity, then Q = QE when CDp = (Do. It follows from 
(2.2) that for other values of CDP 

(cf. I, equation (35)). If Q depends only on the values of CD and its derivatives at p ,  one 
may regard (2.3) as a definition of QE. 

We assume, as in I, that the potential CD is observationally indistinguishable from the 
potential Q + k ,  where k is any constant. This means that the value of any measurable 
physical quantity QE (measured in natural units) must be independent of the choice of k. 
As an example of a measurable quantity we may take QE = CDp - Oq, the potential difference 
between the points p and q ;  but we cannot take QE = CDP. 

Equations that hold in a potential CD often hold in a potential CD + k .  T o  make this precise, 
let Q E  be a measurable natural quantity in the potential CD and let QE be the corresponding 
natural quantity in the potential @+k. Let us define Q to be the CD, quantity corresponding 
to Q E  and s to be the @,+k quantity corresponding to sE. Now if we suppose that Q 
and QE satisfy (2.3) and that Q and QE satisfy the same equation, then since QE = QE 

by the assumption of the last paragraph, we have Q =I 8. Thus any equation valid in the 
potential CD for CDo quantities that satisfy (2.3) is valid in the potential CD+k for the 
corresponding @ , + k  quantities. From (2.2), the equation is also valid for 0, quantities 
in the potential CD + 8. 

The  fact that QE is the same in the potential CD as in the potential @+k does not mean 
that it is independent of CD. It can be any function of the derivatives of 0 and of the 
potential differences OD- CDq for any points p and q. However, if we assume that QE 
depends on the potential only through its value CDp at the point p ,  or if we assume that 
the potential is constant in a certain region and QE depends only on the value of CD in that 
region, then it does follow that QE is independent of 0. 

An example of a quantity QE that may depend on CD is the density of a fluid at the space- 
time point p .  If the fluid at p was at rest at the point q, then the density at p will usually 
be a function of CDP- CDq. Another example, which will be important later, is the natural 
Lagrangian density LFGE of the gravitational field. This is defined in terms of a CDo chart, 
and is a function of the first derivatives of CD. It may also depend on CD - CDl, where CDl 
is some special value of CD (perhaps the value at ‘spatial infinity’, or an average value of Q, 
over all space). 
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For simplicity, we shall usually assume the existence of a (Po chart (U, x) for which U 
is the whole of space-time and x(U) = R4. (One can formulate the theory without this 
assumption.) We use the convention that all quantities except (P are measured in (Do units 
unless indicated otherwise (e.g. by a suffix E). 

3. The action 
The easiest way to develop a consistent field theory is to use an action principle. This 

is especially true for the systems that we shall deal with, whose action can be expressed 
in terms of a local Lagrangian density. In  this section we summarize the essential results 
for such systems, emphasizing only the points that differ from conventional, special- 
relativistic field theory. 

Let (U, x) be a chart?, not necessarily Newtonian, whose coordinates are xfi, and in 
which the metric has components gpv. The components of the fields with respect to (U, x) 
are qM ( M  = 1, 2, ..., N ) ,  the partial derivative of qM with respect to its p argument is 
qM,!, and we write q = (q l ,  q2, ..., qN), Dq = (q l ,o ,  ql , l ,  ..., q N , 3 ) .  It is assumed that the 
action A(%) of the system on an arbitrary region 9 c U can be written 

A(%) = cg19k(q(x) ,  Dq(x))(- detg(x))li2 dx (3.1) 
Z( I) 

where dx = dxo dxl dx2 dx3, det g is the determinant of the matrix whose elements are 
g,, and 9, is a function independent of 8. (We are excluding any explicit dependence 
of =YE on x.) Similarly, if (U’, x’) is another chart such that 9 c U’, then there exists a 
function 9,‘ such that 

A ( 9 )  = 1 c~~A?L(q’(x’ ) ,  Dq’(x’)){  - detg’(x’))lj2 dx‘ (3 4 
X’(W) 

where the x’p are the coordinates of (U’,, x’), q’ = (ql’, q2’, ..., q?’), Dq’ = 
etc. Since &? is arbitrary and the Jacobian of the transformation x -+ x’ is 

q i , l ,  ..., q1;,J, 

equations (3.1) and (3.2) imply that 

Equation (3.3) holds for all charts. Now assume that (U, x) is a (Do chart and (U’, x’) 
is a (DA chart, for some (Do, 0;. In  general, 

on U r\ U’, where the u’, b,, are constants and bk,bk, = 6,, (cf. 4 2). I t  follows that 

a 

and 

t We restrict ourselves to charts that belong to the C“ differentiable structure. We also assume 
the existence of all necessary derivatives, the convergence of all integrals, etc. 
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If therefore we define 

where s = exp{(Q, - Oo)/c9} and s' = exp{(Q, - Q,A)/cg}, we have 

the operation aE/ax' is independent of 0,. It is convenient to write 

and to define &E, for Newtonian charts, by 

9E(q(x)) DEq(x)) = 9E(dx)) Ddx)). 
Equation (3.3) then becomes 

9L(qf(x')) Dh'(x')) = 9E(q(x)> DEdX))* 

We assume that 9; = YE. In  other words, we assume that the function PE is unique- 
the same for all Newtonian charts. 

gE has the dimensions of energy density, [YE] = [ML-1T-2]. It is therefore con- 
sistent with (2.3) to define 3 by 

-@(q) DEq) = s-'&E(q,  DE^) (3.5) 
where s = exp{(Q,- O0)/c~}. (We are, of course, including Q, among the fields q :  we may 
take Q, = ql,  for example.) Similarly, we define 9 ( q ,  Dq) = S-~LY~(~, Dq). Since 
de tg  = - s - ~ ,  from (2,1), equation (3.1) can be rewritten as 

A(W) = 1 cz l=@(q(x) ,  DEq(x)) dx = 1 C E ~ ~ ( Q ( X ) ,  Ddx))  dx (3.6) 
X (  W )  x (  1) 

for any Newtonian chart (U, x ) .  We take note that one can regard dx/cE = dt dxl dx2 dx3 
as a space-time volume element measured in 0, units. All quantities on the right-hand 
side of (3.6) are then measured in Q,, units-which is consistent because A(W), with 
dimensions [ML2TW1], has the same value in Q,, as in natural units. 

T o  formulate an action principle, we consider a family of transformations that depend 
smoothly on a real parameter E :  

where x* = (x*O, x*I, x * ~ ,  x*~) ,  F = (FO, F1,  F2,  F3)  and AI = 1, 2, ..., N. We define xu 
and x*P to be coordinates in the same Q,, chart (U, x )  (that is, the first of equations (3.7) 
represents a mapping p + p * ,  where p and p* are space-time points such that x(p)  = x, 
x(p*) = x*). We assume that (3.7) holds for each E in some interval that contains zero, 
and that 

X" = x + E ~ ( x ,  q(x), Dq(x))+O(e2) 
(3.8) 

q*(x*) = q ( x )  ++X, q(x), Dq(x)) + O(E2) 
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as E + 0, where 

f = (f0,f1,f2,f3), 4” = (q; ,  q;, . e ’ >  &)> h = (AI, hz,  “‘>hN). 
The variation of the functional A(W) corresponding to the transformations (3.8) is 

(Gelfand and Fomin 1963, 4 37.4) 

a 
+ ( 2 ( 4 ( “ ) ,  Ddx))f”(x, !Ax), Ddx)) 

+ 2 - (dx), DdX))UX, dx), D M ) )  dx 
-?r a 2  

(3.9) 
M = 1 a!?M,u 

where f i M  = h,-q,,,fu.. (One can also write 6A(g) in terms of 9, where 
2 ( q ,  D,q) = 9 ( q ,  Dq), but this is less convenient.) We assume as ourprinciple of stationary 
action that 6A(9)  vanishes for any region W and for any admissible? functions f” and 
h, that vanish on the boundary of W .  

Iffu and hM vanish on the boundary of 9, the second pair of terms in (3.9) con- 
tributes nothing to SA(g), and one derives the field equations 

(3.10) 

Suppose that W -+ 8* under (3.8), and write 

A*(%*) = I ~;~Ya(q*(x* ) ,  Dq*(x*)) dx*. (3.11) 

The  action A ( g )  is said to be inuariant under the family of transformations (3.8) if 
A4*(9?*)-A(92) = O(e2) as E + O .  From Noether’s theorem (Gelfand and Fomin 1963, 
$37.5), if the action A(9)  is invariant under the family of transformations (3.8) for an 
arbitrary region 9, then on each extrema1 surface of A (i.e. for each q such that (3.10) is 
satisfied), one has 

X (  a*) 

a 2  
+ 2 - (dx), DdX))L(% d x ) ,  D d 4 j  = 0. (3.12) 

The  proof is simple: we substitute (3.10) in (3.9) and set SA(9) = 0, and use the arbitrari- 
ness of W. 

.VI = 1 “M,u 

For any real constant k,  define I(k)  by 

I(k) = s (-LP(sM Dq(x))fO(x, dx), D d 4 )  
x o = k  

+ 2 E (q(%) ,  Dq(x))hM(x> dx), Dq(x))) d3X (3.13) 

where d3x = dxl dx2 dx3, and where the integral is over the whole hypersurface xo = k .  
(We are assuming that U is the whole of space-time.) If one integrates the left-hand side 

M = 1  2 q M , 0  

t For the definition of the class of admissible functions, see Gelfand and Fomin (1963). 
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of (3.12) over the region between the hyperplanes xo  = a and xo = b and then applies 
the divergence theorem, one finds that I(a) = I(b), showing that I is a conserved quantity. 

x*u = X f i + & E ,  q*(x*) = q(x).  (3.14) 

Since q*M,u(x*) = qM,,(x) ,  one has LF(q*(x*), D q * ( x * ) )  = 9 ( q ( x ) ,  Dq(x)). Let us define a 
new chart (U, x’) with coordinates x’ by the equation x*u = X ’ ~ + E S ~ , , ,  where x* = x(p*), 
x’ = x’(p*). It follows from (3.14) that x’ = x, and that x’(W*) = ~(9). Since the Jacobian 
of the transformation x* -+ x’ is 1, equation (3.11) implies that 

A*(9*) = I c&!Y(q(x’), D q ( x ’ ) )  dx‘ = ,4(W) (3.15) 

and A(W) is invariant under (3.14) for arbitrary W. The conditions of Xoether’s theorem 
are therefore satisfied by (3.14). 

As a special case of (3.8)) take 

x (  5%) 

The transformations (3.14) correspond to 

f” = s,,, h = 0, 6, = h M ,  - q M , f i f u  -qM,v* 

Substituting in (3.12), one finds 

From (3.13), the functions P, and & defined by 
N 

PdK) = CE1 r 2 

are conserved quantities. The P, have the dimensions of momenta and transform like 
Qo momentum under change of Qo, while & has the dimensions of energy and transforms like 
a (Do energy (from (3.5) and (2.3)). We define the vector P ,  whose components in (U, x) 
are P,, to be the total a0 momentum of the system and & to be the total Qo energy. 

The (mixed) (Do energy-momentum T is defined to be the (1,l) tensor field? whose 
components in the Qo chart (U, x) are given by 

N a 2  
Tt(x) = -2(dx), D d x ) ) G u v +  2 __ (dx), D d x ) ) q M , v ( x > *  (3.18) 

M = 1  aqM,u. 

In terms of the T,, one can write (3.16) and (3.17) as 

Ctil = 0 (3.19) 

P, = C E l  T;d3x, 8 = T;d3x. (3.20) 
xo = k  x o = k  

Just as in special relativity, the energy-momentum is not uniquely determined by (3.19) 
and (3.20). Given any functions $,,, such that = --y5nvil for all ,U, v, e, one can define 
a new-energy-momentum 5? by 3?f = Tg+#,v,,,. Since y5uyn,nu = 0 and y50vo = 0, we 
have Tf,u = 0 and 5? = T:+y50vm,m. Provided that the functions y50vm vanish fast enough 
at spatial infinity, it follows from the divergence theorem that P, = c,’JT: d3x, 
d = JQ d3x. 

t An (m, n) tensor is one with contravariant order m and covariant order n. 
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T o  find other families of transformations (3.8) under which L4(B) is invariant for arbitrary 
9, one needs a more elaborate argument. Let (U, x) and (U’, x’) be @, charts such that 
9 c U and x ( 9 )  c x’(U‘). Define a mapping p:W -+ G?* by requiring that, for all p E 9, 
p ( p )  = p a ,  where x ( p )  = x’(p*). If one writes x = ~ ( p ) ,  x’ = ~ ’ ( p ) ,  x* = x(p*),  x*’ = x’(p*), 
then x = x*’: the (U, x )  coordinates of p are the (U’, x’) coordinates of pa.  Before the 
variation, the field components at p in the chart (U, x )  are q,(x) and those in the chart 
(U‘, x‘) are qh(x‘). After the variation, the field components at p* in (U, x )  are qc(x*), 
and those in (U’, x’) are qc’(x*’). We define the variation of the q, by requiring that 

qi’(x*’) = q,(x). (3.21) 

(The varied field components at p*- in (U’, x‘) are the same as the unvaried ones at p in 
(U, x).) However, for fixed CD,, 9 is the same for all CD, charts, and in terms of the 
chart (U’, x’) we find that 

A*(8*) = / cgl=@(q*’(x*’), D&*’(x*’) dx*’. (3.22) 

Since x*‘ = x, equation (3.21) can be written as q; = qM, or as q*‘ = q ;  and it follows 
that q*h,u = q,,G, and D&*’ = D,q. Substituting these results in (3.22), using 
x‘(W*) = x(W), and changing the integration variable to x, one finds that the action is 
indeed invariant : 

A*(W*) = / cE1&(q(x), D,q(x)) dx = A ( 9 ) .  (3.23) 

In  order to apply these results to the construction of conserved quantities, we consider 
a family of @, charts (U’, x’), each labelled by a real parameter E .  (To be more precise, 
we should write the family as {(Uc, xe) ) ,  where (U,, x,) is a 0, chart for each E in some 
neighbourhood of zero.) The  coordinates x ’ of (U’, x’) are related to the coordinates x of a 
fixed CD, chart (U, x )  by 

x‘ = X + E f ( X ) + O ( € 2 )  (3.24) 

as E -+ 0, where f is independent of E. Using the previous notation, we have 

%’( w *) 

%(a)  

= x* + € f  (x*) + O ( E 2 )  

and since x*’ = x, we have x = x*+.f(x*)+O(~~), and hence 

x* = x-€*f(x)+O(E2) (3.25) 

as E -+ 0. (Note that (3.25) reduces to (3.14) if one puts f” = - &, and neglects the 
terms in c2,) The action A(9)  is invariant under (3.25), and the conditions of Noether’s 
theorem are satisfied, provided that 9 c  U and ~ ( 2 )  c x’(U’) for each chart (U’, x‘). One 
can therefore construct conserved quantities as in (3.13). 

As a special case, we discuss the conservation of angular momentum. It follows from 

where b,, is any constant orthogonal 3 x 3 matrix,# then the chart (U,  x‘) with coordinates 
x’ is a Oo chart. Since the matrix ( 8 k m - ~ ~ k n m ) ,  where n is fixed and eknm is the permutation 
symbol, is orthogonal to first order in E ,  a special family of transformations (3.24) is 

x’0 = 2 0 ,  x‘k = ( S k m - E E k n m ) x m .  (3.26) 

4 2 that if (U, x )  is a CD, chart with coordinates x, and if x‘ is defined by x‘O = xo, xlk = bkmxm,  

The corresponding family of mappings (3.25) is 

x*o = xo, x*k = xk +EEknmXm + O ( 2 )  (3 27)  

as E -+ 0 (rotation through E about the xn axis). One can therefore put f” = 8nkc.knm~m, 
h, = h$)-qM,k~knmxm in Noether’s theorem, and equation (3.12) becomes 
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where we have used the definition (3.18) of the energy-momentum. The  hg)  are defined 
by (3.8), and from (3.21), (3.25), (3.24) one finds 

chZ’(x, p(x), Dg(x)) = q:(x*) - q.$(x*’) + (3.29) 

Thus the h$) may be calculated as soon as one knows how the field components qhf behave 
under the coordinate transformation (3.24). I n  the special case when qPI is an invariant, 
one has h g )  = 0. 

If we again assume that U and U’ are the whole of space-time, it follows from (3.28) 
and (3.13) that the vector J ,  whose components in the chart (U, x) at the instant t = k / c ,  are 

2 9  

= QM(x) - &(x’) + O(E’). 

J,(K) = -c,‘ J ( t , pmTp(x )xm+ c -(p(x)> ~ p ( x ) ) h i ~ ( x ,  q(x) ,  ~ q ( x ) ) j d 3 x  
x O = k  M =1 a q M , O  

(3.30) 

is a quantity with the dimensions of angular momentum that transforms as a Qo angular 
momentum under change of Q0. We call J the total Qo angular mcmentum of the system. 

As mentioned in :he paragraph following (3.20), if one defines Tf = T $ - I - + ~ , , ~ ~ ~ ,  where 
+w’uvn = -I),,,, then T satisfies equations (3.19) and (3.20). It is well known (see Landau 
and Lifshitz 1962, 4 32, or Rzewuski 1958) that one can choose the functions I)u.,,, so that 
(3.30) and (3.28) can be written 

J ,  = ---I E I E . ~ ~ T ; ( X ) X ~  d3x and 2 , L ( ~ n , m T ~ ( ~ ) ~ m )  = 0 .  

Using ?,lu = 0, we then find that f$ = fk. 
The conservation laws and symmetries that we have discussed are generalizations of 

special-relativistic results. However, the other conservation laws and symmetries of special 
relativity that are associated with invariance under the full PoincarC group are not usually 
valid in the present theory. 

4. The gravitational field 
As a first application of the general theory, we discuss the gravitational field. We 

consider a system of fields whose CDo Lagrangian density 9 can be written as a sum 
9 = 2?,+LZF, where 9, depends only on the gravitational potential CD and its first 
partial derivatives and LfF contains no term that depends only on Q or its partial 
derivatives. (This rather vague characterization of gF is sufficient for the present, general 
discussion; we shall be more precise later, when we discuss particular systems of fields.) 
We write zG(CD, DQ) instead of 9 , ( p ,  Dp), and we call - Y G  the Q,, Lagrangian density 
of the gravitationaZ$eld. From (3.5), the natural Lagrangian density of the system of fields 
is = s 2 9 .  Since 9* is independent of the choice of Newtonian chart, it follows that 
the natural Lagrangian densities 9 G E  = s 2 9 G  and =.%’,E = s 2 s F  are also independent of 
this choice. 

T o  determine 9 G E ,  one must make further assumptions. We recall that, in special 
relativity, if gfiy\k’,,Y ,y is the Lagrangian density of a scalar field Y, then Y satisfies the “ave 
equation. If, therefore, we suppose that the gravitational potential Q satisfies the wave 
equation in the limiting case when the gravitational field is everywhere weak and no other 
fields are present, then it may be reasonable to assume that 9,, is a function of g f i y @ , , Q , , .  

T o  be more precise, the components guy of the contravariant metric tensor are determined 
in a CDo chart (U, x) by (2.1) and the equationsgfing,, = Sfi,,: 

(4.1) g m n  = s2amn, guo =gON = -s-26,,. 

We define a function w by 
w = g””,u@,y ( 4 4  

where is the partial derivative with respect to the coordinate xu of (U, x), and we assume 
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that _EpGE = f ( w ,  0- Q1), wherefis a smooth function and is a constant independent 
of the choice of Newtonian chart. Since w is independent of the choice of Newtonian 
chart, SO too is 9 G E .  

I n  this section we are concerned mainly with the gravitational field. Later we shall 
discuss various non-gravitational fields, but for the present we restrict ourselves to a very 
simple one: an almost stationary mass distribution. By almost stationary we mean that 
the kinetic energy of the mass distribution is negligible, SO that its Lagrangian density is 
_EpF = - E  where E is its Q0 energy density when it is at rest with respect to a Qo chart. 
Its natural energy density is defined by = s-%. It follows from our general assumptions 

is independent of the choice of Qo, but it is not independent of @ (see the discussion 
near the end of 5 2). T o  determine the Q dependence of EE, one has to impose an additional 
conditioii on the mass distribution. Recalling that in I we developed particle mechanics 
on the assumption that the natural proper mass of a particle is constant in time, we assume 
that p*, the Qo density of natural mass of the mass distribution, is constant in time. The  
Qo mass density p is the Q0 mass per unit volume of 3-space) and since p* is the natural 
mass per unit Q0 volume of 3-space, one has p = p * ~ - ~  from (2.3). For a stationary body, 
assume that p is related to the O0 energy densitye bye = pc2 (the analogue of the Einstein 
relation in special relativity). Using c = s2cE, we find that E = scE2p* and 

where P is a function independent of Q and Ql is a constant. 
The  preceding argument may seem slipshod. If the reader prefers, he may regard the 

last equation as a limiting case of the properly derived results of 4 6 (see (6.23)). 
The  simplest choice of ZG is dpG = Kws-', where K is a constant, If one takes zF = -€, with E defined as above, the total Lagrangian density for the system is 

9 = K ~ S - ~ - - E .  From (3.10)) the field equation for @ is 

Since (4.3) must reduce to Poisson's equation when the gravitational field is weak and 
time-independent, we have K = - l/8nGF, where GE is the Newtonian gravitational 
constant measured in natural units. With thls value of K ,  the energy-momentum TG of the 
gravitational field is given by (3.18): 

The energy density of the gravitational field is 
If @ is time-independent and spherically symmetric about the origin, and "3) = 0 

when Y = (xkxk)li2 > y o ,  the solution of (4.3) regular for Y > y o  is @(x) = Qm - l / ~ ,  where 
@, and I are constants. As pointed out in I, the metric corresponding to such a potential 
is experimentally indistinguishable from the Schwarzschild metric of the Einstein theory. 
(It predicts the same perihelion advance of planets, the same bending of light, etc.). 

In the field equation (4.3)) the energy density of the gravitational field does not appear. 
There is no very compelling reason why it should, but if one feels on moral grounds that 
all forms of energy ought to act as sources of the gravitational field, then one will have to 
change ,LpG. The most obvious thing to try is 2GE = F(w)  for some suitable function F,  
but this does not seem to work. We therefore stick to our previous assumption that 
pG, = f ( w ,  @ -  @ ) where Q1 is a constant independent of the choice of Newtonian 
chart. Choosing a simplef, we assume that 

= T G S .  It is positive definite. 

1. ) 

(4.5) 
9 = 9 G f P F )  9 5 1  = - E  

,LpG = Kw exp[c-,2(-2(@-@o)+sc(Q--@l))] 

where E is defined as before, and cc is a constant. An advantage of assuming that SG has 
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an exponential dependence on @ - CDl is that we do not have to worry about the value of 
al. Replacing Q1 by Ol + j  is equivalent to replacing K by K exp( - ~ j ) ,  for any constant j .  
It therefore simply changes the ratio of the terms dipG and dippF, which we determine by 
comparison with experiment (or by requiring that the theory reduce to the Newtonian 
theory in the appropriate limit). 

@ , m m - ~ - 4 ( @ , 0 0  - & ~ ~ ( 4 -  CI)@,:) = - (2K~~)-~[crK@,,@, ,  + E  exp( - KC$(@ - Q1))]. (4.6) 
Assuming that @ is time-independent and that the gravitational field is everywhere weak, 
we have @‘,,a,, 2: 0, and N - ( ~ K C ~ ) - ~ E ~ ~ ~ { - C I C , ~ ( @ - @ ~ ) ) .  If also there exists 
a constant 0, such that @(x) -+ @, as Y = ( X ~ X ~ ) ~ ’ ~  -+ CO, then because of the weakness 
of the field one has @(x) N Qm for all x. Choosing = CD,, we get E N E ~ ,  and the field 
equation becomes 

This is Poisson’s equation provided that 

The  field equation for @ that follows from (4.5) is 

2: - ( ~ K C ~ ) - ’ E E ~ ~ ~ ( - C I C , ~ ( @ ,  -@I)). 

1/K - 8 n G ~  eXP(CIC$(@,, - @I)>. (4.7) 
It is rather natural to assume that CD, 7 a,, so that 1jK = -8vGE just as before. 

The energy-momentum of the gravitational field is given by (3.18): 

T& = K { z @ , ~ @ , ~  -8mu(@,p@,p - - ~ - 4 @ , t ) }  exp(c;za(@ - CDJ} 

T,,O = K{-  ~s-4@,,@,, - ~ o u ( ~ , p ~ , p - ~ - ~ ~ ~ o ) ~  exp(c,2a(@- 

eG = (8vGE)-’(@,,@,, +s-~@,:) exp{cgZa(@ - QW)). 

(4.8) 

The energy density of the gravitational field is eG = T G 8 ,  and is again positive definite, 
Using (4.7) (that is, assuming that @(X) + @, as r + CO), we find 

(4.9) 
Equations (4.8), (4.6) and E, = T G 8  imply 

0,mm-s-4{@,00 -CE~(Z-CI)O,~)  =  KC:)-'( - XE,+E) exp{- C I C ~ ’ ( @ -  @I)>. (4.10) 
If one thinks it reasonable that the energy densities E and should behave in the same way 
as sources of the gravitational field, then one will take a = - 1.  If we assume (4.7), the 
only arbitrary constants that remain in the field equation are @,, the value of @ ‘at spatial 
infinity’ and GE. In  I we solved the static, spherically symmetric case of (4.10). It was 
shown that when CI = - 1  the perihelion advance of test particles is 8% less than that 
predicted by the Einstein theory. The bending of light is not appreciably different. 

We show in $ 5  (following equation (5.11)) that electromagnetic energy is twice as 
effective a source of @ as is the energy of a stationary mass distribution. It is possible 
that eG acts as a source of @ in the same way as the electromagnetic energy density, which 
would mean choosing tc = -2. The  perihelion advance of test particles in a static, 
spherically symmetric gravitational potential is then 16% less than in the Einstein theory. 
The  bending of light is again not affected. 

The field equations that we have considered all reduce to the wave equation when 
the gravitational field is weak and source free. Physically speaking, this means that small 
gravitational waves travel at the speed of light. There is at present no experimental evidence 
for this assumption, and one may choose not to make it. An example of an alternative 
approach is that of Papapetrou (1954). He assumes that the metric is of the form (2.1) 
and that the Lagrangian density is the same as in the Einstein theory. The resulting field 
equation for O is elliptic, and does not admit wave-like solutions. 

5. The electromagnetic field 
We have assumed that the @, Lagrangian density 9 of a system of fields can be written 

in the form 2 = PG+-YF, where dip, and -YF are the O,, Lagrangian densities of the 
gravitational and non-gravitational fields respectively. In  4 we described how one might 
choose dipG; we now turn to the problem of finding dip,. 
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One usually deals with fields whose Lagrangian density is known in the special- 
relativistic limit and, for such fields, there is a simple prescription for finding a possible 2,. 
One takes the special-relativistic Lagrangian density (which involves the field components 
qM and their first partial derivatives q M , J  and writes each qM,o  as c-’aqM/at. The xk and 
xo = c,t are then reinterpreted as Qo coordinates, the qM as Q0 field components and 
c as the Qo speed of light. The  resulting expression is assumed to be the Qo Lagrangian 
density SF. Since 

2(@ - Qo) ( c; 1 c = cEs2 = c,exp 

this amounts to saying that one gets -‘ZF from the special-relativistic Lagrangian density 
by replacing q M , o  by s - 2 q M , 0 .  

This prescription gives a reasonable first guess for SF: one that has the correct trans- 
formation properties and the correct special-relativistic limit. The guess will sometimes be 
wrong (just as, in the Einstein theory, the principle of equivalence sometimes gives the 
wrong answer-see Trautman 1965, 5 6.2). T o  put matters right, one can try replacing 
terms like spqM,p by (s?q,),,, or one can introduce new qM, until one gets at last an sF 
that agrees with experiments. 

As a first example, we consider a system of interacting gravitational and electromagnetic 
fields. I n  special relativity, the Lagrangian density of the electromagnetic field interacting 
with a current density j is &(E2 - B2) + c-IAUjU, where the electric field E and the magnetic 
induction B are related to the electromagnetic potential A = (Ao,  A )  by 

E = VAo-c-1aA/8t, B = curlA. 

We assume that the j ,  are given functions; we are not going to discuss the dynamics of the 
current density. 

Electromagnetic quantities will be measured in Heaviside (that is, rationalized Gaussian) 
units?, in which the force between charges 2l and 22 a distance Y apart has a magnitude 
/2,2,/4nv2/. (We are still considering flat space-time.) The  dimensions of charge are 
therefore [2]  = [M1’2L3’2T-1], while [ E ]  = [B]  = [2L-2] = [M1’2L-1/2T-1], and 
[A] = [LB] = [M1/2L1’2T-1], T h e y  are related to the charge density p and the 3-velocity 
Vof the charge density b y j o  = p c , j  = pV, so that [j”] = [2L-2T-1] = [M1/2L-1’2T-2]. 
We see that all the terms in the Lagrangian density &(E2 - B2) + c-IA, j. do in fact have the 
dimensions of energy density. 

If one applies the prescription given at the beginning of this section, one finds that the 
Q0 Lagrangian density of the electromagnetic field is =YF = &(E2 - B2) + c-IA,jU, where 
all quantities are now measured in Qo units, and where 

B = curl A ,  E = V A , - C - ~ ~ A / ~ ~  = V A , - S - ~ A , , .  

It follows from (2.3) that A, and? have the same values in Qo as in natural units: A, = AUE, 

The total Lagrangian density of the system is 9= L ? G + s F  and, since -YG depends 
only on Q, the field equations for the electromagnetic field are determined entirely by sF. 
Using (3.10) and the LYF of the last paragraph one can show, in much the same way as 
in the Maxwell theory, that the total Q o  charge of the system is a conserved quantity. The  
proof requires that the fields vanish sufficiently fast as Y = ( X ~ X ~ ) ’ ’ ~  -+ CO. 

Conservation of the total Qo charge may seem strange, but it is not obviously impossible. 
One cannot of course conclude from the conservation of the total, macroscopic, Qo charge 
that the Oo charges of elementary particles must be constant: it might equally well be that 
the natural charges of elementary particles are constant, and that the conservation of the 
total Qo charge is accomplished by the annihilation or creation of charged elementary 

t Choosing to measure electromagnetic quantities in Heaviside units is like choosing to measure 
lengths in metres (rather than feet, say). When we discuss electromagnetism in general space-time, 
we shall have to distinguish between 0 0  Heaviside units and natural Heaviside units, just as we 
distinguish between 0 0  metres and natural metres. 

jil = j,. 
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particles. In  fact, the assumption that the CD, charge of the electron is constant is not tenable. 
It implies that the Rydberg ‘constant’, measured in natural units, is a function of @, and 
this does not agree with measurements of the gravitational red shift. 

Following the conservative principles of I, we reject the odd idea that particles are 
created or destroyed in such a way that the total CDo charge is conserved. Instead, we try 
to modify the Lagrangian density 2YF so that it implies the conservation of the total natural 
charge. The  modification is chosen so that the equation expressing this conservation law 
shall have as simple a form as possible. In  this way we are led to assume that 

zpF = +(E2 - B2) + c-lsA,j@ (5.1) 
E = s-I{ ~ ( S ~ A , ) - A , ~ } ,  B = scu r lA  ( 5 4  

(5.3) 

where now A, = A,, s-l ,  and where t h e y  are related to the 
Qo velocity I‘ by 

T o  keep the dimensions right in (5.1), one may regard s as a Qo length, for example (one 
has sE = 1). The  dimensions of the electromagnetic potential are then 

charge density p and its 

j o  = pc, j k  = p v .  

[A,] = [M1‘2L-1/2T-1], 

We assume that the total Lagrangian density is 2’ = 2’F+2’G, where gG is given 
by (4.5). The electromagnetic field equations that follow from (3.10), (5.1), (5.2) and (5.3) 
are 

curl(sl3) = cgls-Ij + (s-lE),o (5.4) 
(5 5) div(s-1E) = c ~ 1 s - 3 j O  = s - 1 ~  

and from (5.2) 
curl(sE) = - ( s - % ) , ~  

div(sdlB) = 0. 

We call equations ( 5  -4)-(5.7) the (generalized) Maxwell equations. 
From (5.4) and (5.5) one derives the continuity equation 

a 
at div(s-Ij) = - - ( s - l p ) .  ( 5 . 8 )  

Provided that s - l j  falls off sufficiently rapidly at spatial infinity, it follows from (5.8) and 
the divergence theorem that Js-Ip d3x, where the integral is over the whole hyperplane 
xo = k, is a conserved quantity (that is, its value is independent of the choice of K ) .  The 
quantity p is the charge per unit (Do volume. Since natural and a0 charge are related 
by SE ,= s - I A ? ,  the natural charge per unit a,, volume is SKIP, and the total natural charge 
at the instant xo = k is Js-lp d3x. The  total natural charge is therefore conserved. 

The  energy-momentum TF corresponding to the SF of (5.1) is given by 

From (5.1), (5.2) and (5.9) 

T F 8  = B(E2+B2)-~-1~A,jLC-s-1E,(~2Ao),m. (5.10) 
The  field equation for @ is (2L?/2@,w),w = Z ? / 2 @ ,  where 2’ = 2’G+2’F, and to 

c.dculate 8 9 F / 8 @  one must know how? depends on a. Since JsK1p d3x is a conserved 
quantity, a possible, very special choice of p is p(x) = exp[c,-2{@(x) - @,)]R(x) ,  where 
(P, is a constant, and R is a function independent of 0. It follows from (5.3) that 
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(a/a@)(s- l jO) = 2c,2s-1jo. Setting j k  = 0, and using (5.5) we find that the @ field 
equation is (cf. (4.6)) 

@," - s- 4{@,oo -4(4 - %)CE2@,$) +&%C,Z@,,@,,  

= - ( ~ K C ~ ) - ~ ( E ~ + B ~ )  exp{-Ct~,~(@-@~)}. (5.11) 

Assuming as before that 0 -+ @,, as Y = (xkxk)l~z -+ CO, one has K = - 1/8nGE (cf. equa- 
tions (4.6) and (4.7)). If we identify $(E2+B2) as the energy density of the electromagnetic 
field (see equation (5.18)), then (4.6) shows that this is twice as effective a source of @ as 
is the energy density E of a matter distribution. (We recall that in I we showed that the 
weight of a 'photon' is twice that of a slowly moving particle of the same energy.) 

Define functions F,, by 

(5.12) 1. F,, = -Fom 
F,, = - F,, = A,,, - A m s ,  = E,,,s-~B, 

(S~AO),,-A,,O = SE, 

The Maxwell equations (5.6) and (5.7) are equivalent to 

F2lI*V-+FO,,A$-FVA,Li = 0. (5.13) 

Define functions F t  by F{ = gUaF,,. From (4.1) and (5.12) 

(5.14) 
F$ = 0 ,  F g  = s3E,, F i  = s - ~ E ,  
F," = - F k  = E,,~sB, 

The Maxwell equations (5.4) and (5.5) are equivalent to 

Fk,lI = - c ~ I s - l j m  

F;,,, = ( S - ~ F : ) , ~  = C E I S - ~ ~ O  
(5.15) 

Equations (5.13) and (5.15) are sometimes easier to manipulate than (5.4)-(5.7). 

is the Lagrangian density of the electromagnetic field, and 2Zint = C ~ ~ S - ~ A ~ P  represents 
the interaction with the current density. The  energy-momentum T, corresponding to 
Se is defined by Tei = (a9e/BA~.,,)A,,,+(a2Ye/G@,,)~,,-6,,2Ye. We have 

(5.16) 
where TF is given by (5.9). 

The  energy-momentum p of an isolated system can be chosen to have the symmetry 
property pc = T k ,  which is related to the conservation of angular momentum (see § 4). 
For a system that interacts with an external current density, the total angular momentum 
need not be conserved. However, one can still define a symmetrical energy-momentum 

The  Lagrangian density (5.1) can be written 9, = 2Ye+LYInt, where 2Ze = &(EZ-- B2 ) 

Tei = TFi + a f i y g i n t  

Fe for the electromagnetic field by 

Pek," = 

Peg = 

Te; = 

Fe: = 

From (5.2), (5.14), (5.16) and (5.9) 

Fe," = E,E, + B,Bn -&3,,(Ez + B2) 
Te? = S ~ E , ~ , E ~ B , ,  
Fe: = - s- ' c m  nE p Bn 
!Pet = &(E2 + B2)  

(5.17) 

(5.18) 
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or alternatively, using (5.14)) 

pe,” = s - 2 ( ~ ; ~ ~ - g i , , ~ ; ~ ~ ) .  (5.19) 

= pet. Indeed, if one defines pe,, = g,,pe;, equation (2.1) implies It follows tha? 
that Pew, = T,,,. 

From (5.19), (5.15), (5.13) we get, after a short calculation, 

p ,  ev., = -  c z y s  - y F m v  + s - 3jOF0,) - +jF,,F,o(s - 2 )  ,v + $F,pPl(s2),, (5.20) 

which is equivalent to 

rfk; , , ,  = c-l(enmpjmBp +jOEn) + @(E2 + B2)@,, (5.21) 

(5.22) 

One can interpret the right-hand side of (5.21) in terms of the force densities of the electro- 
magnetic and gravitational fields, and the right-hand side of (5.22) in terms of the rate at 
which these force densities do work. 

For given E ,  B and a, one can regard (5.2) as a set of partial differential equations for 
the A,. These equations do not determine the A, uniquely: there exist functions G,,, not 
all zero, such that the transformation A, --f A, + G,, @ -+ @, leaves E and B invariant. 
Any such transformation is called a gauge transformation. The  field equations (5.4)-(5.7) 
and (5.11) are invariant under gauge transformations. As in classical electromagnetism, 
we may restrict the gauge transformations by imposing a condition on the A,. If the restric- 
tion is such that the G, are uniquely determined, well and good. Otherwise we must 
make sure that all observable consequences of the theory are independent of the choice of 
the G,. 

The  necessary and sufficient conditions that must be satisfied by the G, if the trans- 
formation A, + A, + G,, if, -+ @, is to be a gauge transformation are 

( S 2 G o ) , m  = G m , o ,  Gm,n = Gn,m* (5.23) 

peE,, = - czljmE, + cg2(E2 + B2)@,o. 

The Poincari. lemma implies that there exists a function such that 

G, = r,m, G, = S - 2 r , , .  (5.24) 

The simplest way of restricting the gauge transformations is perhaps by requiring that the 
A, satisfy A,$, = 0, or div A = 0 (Coulomb gauge). The existence of such A,  is proved 
as in classical electromagnetism. If we define A; = A, + G,, where Ah,, = 0 and where 
we impose the same boundary conditions on the A: as on the A, at spatial infinity, then 
Gm,m = = 0, and F,,(x) - t o  as 1x1 --f M). Hence r,,,, = 0, and it follows from a 
theorem of analysis that G,(x) = r,,(x) = 0 for all x. We have therefore proved that 
Ai = A, : the electromagnetic potential is uniquely determined by these conditions. 

6. The ideal fluid 
As a final example, we consider the interaction of the gravitational field with an ideal 

fluid. We use the same Lagrangian method as before, even though this is not the approach 
favoured by most fluid dynamicists. (For an attack on the use of variational principles, see 
Truesdell and Toupin 1960, Q 231 ; for a more favourable assessment, Serrin 1959, $ 9  14,15 ; 
for a brief history of relativistic fluid mechanics, Schmid 1967). The  chief limitation of 
Lagrangian methods is that they cannot be applied to dissipative systems. One is therefore 
restricted to fluids without viscosity or heat conductivity. 

The  most convenient Lagrangian formulation of fluid mechanics is in terms of the 
Clebsch potential (Clebsch 1859). This was first applied to classical hydrodynamics by 
Bateman (1932) (see also It6 1953). The  special relativistic generalization is due to Wei 
(1959) and Tam (1966). Tam’s special-relativistic Lagrangian density for an ideal fluid 
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where p is the proper mass per unit proper volume, and J ,  U and 9 are, respectively, the 
proper enthalpy, internal energy and entropy, all per unit proper mass. The functions 
+, 9, f are the generalized Clebsch potentials, V is the 3-velocity of the fluid, V = IF'], 
and y is a function to be determined from the field equations. 

It was assumed in I that the natural, proper mass of a particle is a conserved quantity. 
Similarly, it seems reasonable to assume that the total natural proper mass of the fluid is 
conserved (cf. $4). The  CDo Lagrangian density that one gets by applying the simple 
prescription of 5 5 to (6.1) is not compatible with this condition. However, a minor change 
puts things right, and we find the following Qo Lagrangian density for an ideal fluid: 

9 f - - -1 2 p  J 2  Y ( I - -  1;) +ipJ-pU(p ,  9, ~)+pc-1yVks581,+pys380 (6.2) 

where s = exp(( (D - CDo)/c~} as before, and the 8, are defined by 

6, = +J + 9 9 , P  + A f , u *  (6-3) 
As usual, CD is measured in natural units, but the other quantities in (6.2) are in CDo units. 
The  total CDo Lagrangian density of the system is L? = gPf +gG, where L?pc is defined by 

The field equations for + and J that follow from (6.2), (6.3) and (3.10) imply that 
(4.5). 

(6.4) 1 5 k  
(PC-  YS v ) , ~ C + ( P Y S ~ ) , ~  = 0 

1 

We shall always choose the positive sign in (6.5). Since p is the CD, proper mass per unit 
<Do proper volume, we see that py is the CD9 proper mass per unit CDo volume and, by (2.3), 
that s3py is the natural proper mass per unit (Do volume. Applying the divergence theorem 
to (6.4) between the hypersurfaces xo = a and xo = b, where a and b are constants, one 
proves that the total natural proper mass of the fluid is conserved, provided that p vanishes 
fast enough at spatial infinity. 

Using (6.4), we find that the field equations for $, A, ( and Y simplify to 

where for any differentiable function f we define 

Equation (6.5) and the field equations for p ,  Vk ,  y give 

JyVk+CS5%k O 
- J y - 1 + ~ - 1 ~ 5 V k 8 k + ~ 3 8 0  = 0 .  

Because the dimensions of U are [L2T-2], the natural proper internal energy per unit 
natural proper mass is U, = Us-4. We assume that U, is independent of @, so that 
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2U/2@ = 4 c ~ ~ U .  The  classical relation d U  = T d Y - p  dv, where v = l / p ,  is therefore 
modified to 

d V  = T d Y - p d ~ + 4 c , ~ U d @ .  (6.10) 

Since dv = -dp/p2, we have 
au p - T ,  - = -  

aU -- 
a y  ap p2' 

Equations (6.7), (6.9), (6.11) give the usual expression for the enthalpy: 

P J =  U+-. 
P 

(6.11) 

(6.12) 

Taking the differential of (6.12) and using (6.10)) we get d J  = T d Y + p - l  d p + 4 ~ ; ~ U d @ . ,  
from which it follows that 

Js ,  = T Y , , + p - ' p , , + 4 ~ ~ ~  (6.13) 

From (6.6), (6.13)) we have 
D @  
D t  

- - 4c,2p --) , 
D J  
- -4c,2~ - = p- l  

D t  D t  
The dimensions of J are the same as those of 

-- - p- l  DJE 
D t  

It simplifies some calculations to define uk 

U ,  so JE = Jsc4 and 

D(Ps - *I 
D t  

= y V k / c ,  u o  = - y .  From (6.5) 

U k U k - U 0 2  = -1. 
Equations (6.8) and (6.9) give 

It follows from (6.3)) (6.6)) (6.11)) and the equation 

JUO = - S 3 8 0 ,  JUk = -s58,. 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

which is the generalized vorticity equation. From (6.15) and (6.16) 

uk6k,, - S - 2 U o e o , u  = ( s - ~ J ) , ,  f2C,2S-5J~$@,U. 

Substituting this into (6.17) and using (6.13), we derive the generalixed Euler equations 

A special case of an ideal fluid is 'dust', which is defined by the conditionp = 0 every- 
where. From (6.14)) JE is constant in time for each particle of dust. We assume that, at 
some initial instant, JE is everywhere constant. It follows that JE is constant everywhere 
and at all times. Putting p = m in (6.18)) and using (6.16), one finds 

D 
D t  
- ( s - 3 y P )  = -7s (6.19) 

The  derivative D / D t  denotes the rate of change of quantities associated with a given dust 
particle. Thus, from I, equation (42), the equation of motion of a dust particle is identical 



518 P. Rasta11 

with that of a particle whose natural proper mass is constant, and which is subject only to 
gravitational forces. We proved in I that the worldlines of such particles are geodesics of 
the space-time metric g. The  same is therefore true of the worldlines of dust particles. 
Hence, if we wish, we may eliminate the undefined objects ‘test particles’ from our theory, 
and replace them by ‘small dust clouds’. 

We now return to the general ideal fluid (p # 0). The  components of the Oo energy- 
momentum T f  corresponding to the Lagrangian density (6.2) are 

From (6.5), (6.9), (6.12) one shows that 9, = p and, using (6.16), 

(6.20) 

The  Oo energy densitye, of the ideal fluid is defined bye, = Tf8. Since uo = - y,  we have 

Tfh  = -pJUkUm-8kmp, Tf ;  = pJuZ-P 
Tf;  = - P Js2u,uo, TfO, = p J ~ - ~ u , u ,  

(6.21) 

The  field equation for the gravitational potential is ( 8 9 G / a @ , M ) , u  = 2LYG/aO+ aLFf/a@. 
From (6.2), (6.9), (6.10), (6.12) we get 

(6.22) 

(6.23) 

If we again assume that O -+ as Y = (xkxk)lI2 + 00, then K = - lISrG, (see equa- 
tion (4.7)). Equation (6.23) reduces to (4.6) whenp = 0 and V = 0 (one has E = ef = pJ).  
As p -+ 0 and V -+ c,  we have pJy2(1 + V2/c2) - 4p -+ 2 q  (compare (5.1 1) and the remarks 
that follow). 

7. Conclusion 
The theory has now been developed far enough to make it plausible that one could easily 

rewrite the whole of classical physics and take account of gravitational effects in the same 
sort of way. The  situation is to be contrasted with that of geometrical theories of gravitation, 
whose assumptions are so different from those of other physical theories that it is very 
hard to accommodate them to anything else. As mentioned in I, 5 1, this has resulted in 
an unfortunate separation of gravitation from the rest of physics. With our theory, there 
seems to be no reason why reconciliation should not be complete. 

From the technical point of view, the theory has two agreeable features. 
(i) Space-time can be treated as though it were flat. Thus one avoids the complexities 

of Riemannian geometry. 
(ii) The  gravitational field is described by a single, real function. Calculations are 

consequently much simpler than in the Einstein theory, for example, and one may hope 
to make progress with previously intractable problems (such as the quantization of the 
gravitational field). 

It is too much to expect that the theory will long survive unchanged. We may hope 
that it will bear the same relation to the future theory of gravitation as does electrostatics 
to Maxwell’s theory of electromagnetism. Perhaps the proposed Stanford gyroscope 
experiment will tell us whether we must introduce a gravitational vector potential. 
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